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pulse, was measured at a receiving antenna.

A generator was constructed to produce the time-inverse of the measured
waveform, which was driven into the transmitting antenna. The signal
at the output of the receiver antenna was measured and observed to be
an impulse with processing gain.

The antenna range was calibrated using a CW signal of the same amplitude
as the transmitted signal. The processing gain of the system is defined
as the ratio of the impulse amplitude and was measured at approximately
20 dB. For this system, the theoretical gain is approximately 23 dB.

The generator was a passive device consisting of an array of 46 cali-
brated coaxial delay lines which delay the front of a step-input wave-
form. The resulting delayed signals are added, in time, in a series
of power combiners to provide the up-chirp pulse.
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EVALUATION

American Electronic Laboratories was successful in

building and demonstrating a chirp waveform generator.

This generator was employed to a set of dispersive antennas

in which spatial pulse compression was demonstrated. The

successes in this program have added to the Air Force's

goal of obtaining large energy content in a wideband impul-

sive waveform.

PAUL VAN ETTEN
Project Engineer

tA .
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INTRODUCTION

This report presents the findings and results of experimental testing conducted by

AEL to determine chirp waveform response that matched the combined impulse re-

sponse of two AEL Model APN-995B Coplanar Log-Periodic Antennas. This testing

was performed in accordance with the requirements of the contractual documents re-

lated to Contract F30602-77-C-0136. These results, along with a comprehensive in-

vestigation into the associated design criteria and the related field compressive and

dispersive response technology, will be detailed in this report.

In order to conduct these tests to the stipulated RADC requisites, AEL designed,

developed, and constructed an emitter that would fulfill the radiation and power densi-

ty requirements of this program. This emitter was constructed to meet the imposed

stringent standards and procedures. The emitter is shown in Figures 1 and 2. As

required, for this intensive electromagnetic field testing, two AEL Model APN-995B

Coplanar Log-Periodic Antennas were employed with the AEL-built exciter as a pulse

compression network for this contract. See Figure 3 for a photograph of the antenna.

Radiated emissions were obtained, measured, and recorded with the resulting

hard copy of the tests presented herein together with its associated technical data.

In addition to the experimental testing, analysis was also conducted by AEL on

the resulting data to reconcile differences in empirical graphs of a single, underlying

logarithmic down chirp waveform. These results are presented in Appendix 1.

Appendix 2 presents the actual graphs obtained during the testing of two AEL Model

APN-995B Coplanar Log-Periodic Antennas. Appendix 3 presents the detailed results

of AEL's analysis, highlighting the resulting zero-crossing times of the desired up-

chirp waveform. Appendix 4 is a reprint of an article detailing "Computer Modeling

of a Log Periodic Antenna". Conclusions are presented at the end of the body of this

report.
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PART I

DETERMINATION OF THE LOGARITHMIC CHIRP

WAVEFORM THAT MATCHES THE COMBINED
IMPULSE RESPONSE OF TWO AEL APN-995B

COPLANAR LOG-PERIODIC ANTENNAS

11/12



PART I

DETERMINATION OF THE LOGARITHMIC CHIRP WAVEFORM THAT
MATCHES THE COMBINED IMPULSE RESPONSE OF

TWO AEL APN-995B COPLANAR LOG-PERIODIC ANTENNAS

Two of the APN-995B antennas were set up on a pattern range, facing each other

nose-to-nose, one was excited by a fractional-nanosecond pulse, and the down-chirping

output of the other was presented to a sampling oscilloscope, whose output was conven-

iently obtained in hard copy through the use of a chart recorder instead of a camera.

Several waveform graphs were thus obtained, showing portions of the combined

impulse response of the two antennas, plus the cable that was involved (insofar as

that impulse response is approximated by the down-chirp waveform actually observed).

Five of these waveform graphs were selected for data reduction, with attention center-

ing primarily on the timing of the zero-crossings of the oscillatory waveform involved.

The uneven pattern of relative amplitudes of the successive positive and negative peaks

of the waveform, although not of primary interest for this immediate investigation,

was instrumental in permitting the different zero-crossings shown in the various wave-

form graphs to be identified unambiguously, independently of the graph upon which

they appeared, and thus to be assigned a single, coherent ordinal numbering, consis-

tent from one graph to the next. Copies of the five graphs are shown in Appendix 2.

The five graphs selected for analysis were as follows:

"GRAPH 2": Shows substantially all of the impulse-response or, down-chirp,

waveform (at least 180 nSec of it), but at a relatively slow sweep rate of 20

nSec/inch. Zero-crossings from the eighth to the fifty-first were clearly I
measurable; those prior to the eighth were identifiable, but were not very

well measurable because of overlapping of their ink traces; those subsequent

to the forty-seventh were not of interest, through corresponding to instanta-

neous frequencies too far below 50 MHz. The eighth through the forty-

seventh zero-crossings were carefully measured as to time of occurrence

(in a manner which is described farther below), and corresponded to a

range of instantaneous frequencies from about 750 MHz down to 47 MHz.

13



"GRAPH 4": Shows the beginning of the down-chirp waveform, at a greatly

expanded sweep rate of 2 nSec/inch, enabling clear identification of its zero-

crossings down to the "0th" (at its tangible start), and permitting accurate

measurement of the times of occurrence of the zero-crossings from the first

up to and including the sixteenth, covering the range from 1.24 GHz down to

430 MHz. This graph controls the ordinal numbering of all the zero-

crossings.

"GRAPH 5": Shows the first three-quarters of the down-chirp waveform, at

an intermediate sweep rate of 10 nSec/inch, permitting clear identification

and accurate measurements of zero-crossings from the 0th to the thirty-

seventh, which cover the range from 1.33 GHz down to 96 MHz.

"GRAPH 6": Shows the latter half of the main part of the down-chirp wave-

form, but not its very end, and again at a sweep rate of 10 nSec/inch. Zero-

crossings from the twenty-eighth to the forty-sixth are clear and measurable,

and cover the range from approximately 180 MHz down to 51 MHz.

"GRAPH 7": Shows the end of the down-chirp waveform region of interest,

with zero-crossings from the thirty-ninth to the fifty-first clearly identifiable

and measurable. However, only those up to and including the forty-seventh

were measured, covering the range from approximately 84 MHz down to 47

MHz. It was fortuitous that the portion of the waveform past the forty-

seventh zero-crossing was not of interest, because degradation of the wave-

shape to a nonsinusoidal shape occurred there.

The 48 zero-crossings of interest (of ordinal numbers 0 through 47), on the five

graphs previously described, were measured as to time of occurrence with the aid of

a binocular microscope equipped with a reticle marked in 0.001 inch divisions: The

reticle scale was used to estimate the center of the (0. 024 inch to 0. 026 inch wide) ink

trace produced by the chart recorder. The locations of the zero-crossings on the

chart-recorder graphs were obtained with a precision of a few thousandths of an inch,

hence of picoseconds to tens of picoseconds in time, depending upon the sweep rate

of the graph; this precision, although it far exceeds the absolute accuracy that can

be claimed for the same zero-crossing times, is useful because it all but eliminates

14
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the observation of the graphs themselves as a source of error in determining the

properties of the underlying chirp waveform that they separately and collectively por-

tray. On each graph, for convenience, the left-hand margin of the graph was initially

taken as an arbitrary time-reference origin.

As the first step in the analysis of the zero-crossing time data from the five

graphs measured, the zero-crossing data for each graph, separately, were fitted by

the theoretical log-down-chirp formula:

N = AInT-B, (1)

where N ideally represents the ordinal number of the zero-crossing, if an integer, but

represents a noninteger number of half-cycles otherwise; A and B are undetermined

constant coefficients; and, T represents the empirically determined time t of the

zero-crossing, shifted by an amount D which is the same for all the zero-crossings

on the same graph, i.e.,

T = t+D. (2)

The method of fitting the data was as follows. A given time-origin shift D was provi-

sionally assumed, and was used to shift each observed zero-crossing time to a new

value T, according to Equation (2). The resulting collection of T-data for the graph

being analyzed was then fitted maximally well by the formula (1), by choosing the con-

stant coefficients A and B according to the method of least squares: the quantity that

was minimized was the sum of the squares of the discrepancies between the right-hand

side of Equation (1) and the ordinal number N of the zero-crossing in question, evalu-

ated over all the zero-crossings on the graph. This minimized sum-of-squares of

(essentially) phase-discrepancies-at-zero-crossings was then calculated, and tabu-

lated versus different values assigned tothe time-shift D, to empirically find the best

value of D, that gave the smallest value for the A-and-B-minimized sum of squares of

zero-crossing phase discrepancies. In this way, an optimized set of values was de-

termined for the entire set of three coefficients A, B, and D, completely fixing the

theoretical equation that best represented the zero-crossing data for the graph. The

accompanying computer printout sheets (Appendix 3) labeled C1 through C5 show the

15



final results of this phase of the analysis, obtained separately for each of the five

waveform graphs of interest; these sheets are self-explanatory. The computer used

was a desk-top programmable calculator, Hewlett-Packard 9825A. All of its printouts

are shown in Appendix 3.

The essential results of the printouts (Cl to C5) are summarized in the following

table, in which the coefficients C and K belong to the formula,

T= CKN, (3)

which is the inverse of Equation (1), and which gives the theoretical T-scale time of

occurrence of a zero-crossing if the ordinal number N of the zero-crossing is

specified.

For purposes of comparison, a sixth row of entries, for a graph no. "0", has

been added to Table 1 to show the results of a reanalysis of the data concerning the

times of positive peaks of the down-chirp waveform that was shown in RADC Oscillo-

gram Photo RADC-OC-74-79. The results of this reanalysis, done by the present

more mathematically sophisticated method, are traced in greater detail on the com-

puter printout sheet C6; these results slightly correct and update the earlier analysis

of the RADC-OC-74-79 Oscillogram Photo that was presented in Technical Appendix

A of AEL Proposal No. 18538-4373. (Note that the "K" value of 1. 1484, that was

derived in the earlier analysis of that Oscillogram Photo, was a log-change factor per

full cycle, so that its square root, or, 1.0716, is a K-factor per half-cycle, which

can be directly compared to the newer values that are listed here for parameter K.)

Because of the fact that the ordinal number N is essentially a position coordinate

that counts half-cycles of the chirp waveform, N is conveniently assigned integer val-

ues at the zero-crossings of the chirp waveform (as in printouts Cl through C5); but

it must then, instead, be assigned values that differ by one-half unit from integers

when peaks of the chirp waveform are being described (as in printout C6). The choice

of the particular ordinal-number position "N = -5. 5 half-cycles", for the first datum

listed in printout C6, (e. g., as opposed to N = 6.5 or N = -4.5, etc.), serves to put

the ordinal numbering of the measured waveform peaks on Oscillogram Photo RADC-

OC-74-79 into maximally good agreement (as far as can be determined) with the

16
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mutually consistent ordinal numberings assigned to the zero-crossings of the five new

waveform graphs that have here been reported via printouts C1 through CS. Particu-

larly, the ordinal numbering N adopted on printout C6 puts that sheet's resulting value

of the parameter C into maximally good agreement with the value of C that comes out

of the mathematical reconciliation of the five new waveform graphs (i. e., Graphs 2,

4, 5, 6, and 7) which is described next. It should be noted that the different possible

ordinal numberings, that might have been used on printout C6 in place of the one

actually used there, differ only by what is essentially a coordinate shift, in N, and,

therfore, would only affect the values of the parameters C and B, and not the value of

the log-change factor K, nor the value of the related parameter A.

The numerical results entered in the parameter columns A, B, C, and K in Table

1 show quite good agreement between the graphs 2, 4, 5, and 6, with some departure

occurring in Graph 7; and these output data agree remarkably well with those for

"Graph 0", representing the waveform RADC-OC-74-79, which was taken several

years earlier and with a different pair of the APN-995B antennas. Particularly, in

Table 1, the consistency of the different K-values is most impressive, whichi is im-

portant, because K is the principal chirp waveform parameter: K, as used here, is

the factor by which the half-period of the down-chirp increases during each successive

half-cycle of its oscillation.

The mutual consistency of the parameter values, displayed in Table 1 for the five

graphs of current interest, is sufficiently good that a final set of parameter values

might have been assigned by arbitrarily averaging the parameters of the five separate

graphs. But a more sophisticated reconciliation of the data from the different graphs

was deemed desirable, that would in essence subject all of their data simultaneously

to a single least-squares reduction; and that would also allow for, and from a statis-

tical standpoint shed some light on, slight uncertainties in the relative sweep rates of

the different waveform graphs. Accordingly, a complete theoretical method was de-

vised for performing such an over-all analysis and reconciliation of the data; this

method is developed in full methematical detail in the accompanying Appendix 1.

With reference to equation locations numbered in Appendix 1, the numerical

analysis of the data proceeds as follows. (Optional portions of the discussion, which

18
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discuss calculations that do not need to be performed for present purposes,, but which

may be helpful in illustrating the logic of the theoretical method employed, are in-

dented for clarity.) The zero-crossing times tNM specified in (7) are measured, and

constitute the totality of input data for the analysis. A trial value for the parameter

K is then assumed outright, somewhere in the general vicinity of 1. 07 (see Table 1).

The five different sums which can be identified as contributing to the right-hand sides

of (21) and (22) are next calculated, and from them the quantities QM and RM are

calculated via (21) and (22), for each of the waveform graphs (which are distinguished

via the subscript M); the values of some of the contributing sums are retained for

later use in certain other formulas.

The five caluclated values RM, together with the known numbers of data

points, JM, defined at (16. 5), can in principle be used to compute the

best value of the parameter C (for the assumed K) from the formula (28)

which involves two further sums; and this value of C, together with the

quantities QM and RM already calculated, can in principle be used to

calculate best time-scale adjustment factors SM, and best time-origin

shift amounts DM, for the various graphs, via (20) and (19) respectively,

which in essence optimize the fit of the empirical zero-crossings by a

single theoretical log-chirp waveform; the scale-adjustment factors

SM, and the time-shifts DM, are usable as in (8), to adjust the raw

empirical zero-crossing times tNM to produce optimally reduced em-

pirical zero-crossing times, TNM, which are suitable to be compared,

as in (10), with theoretical logarithmic-down-chirp zero-crossing times

computable from the formula (9).

But the process that can be visualized' as starting from formula (28) - of computing

the individual time-discrepancies between the reduced-empirical and the theoretical

zero-crossings, of re-expressing each discrepancy as a phase discrepancy referred

to the local period of the chirp, and of computing the (minimized) RMS value "E" of

all of these phase discrepancies of zero-crossings, for all of the five waveform

graphs taken together - is all conveniently bypassed, simply by using the formula

19



(31) which is based upon quantities that are already known, and which gives the de-

sired E directly, not even requiring the knowledge of the value of the parameter C.

In a similar way, the criterion that leads to the best value for C (i. e., that the scale-

adjustment factors SM should in a collective sense depart minimally from their ideal

value of unity) also gives the convenient formula (33) for a quantity U that expresses

how large that minimal departure must be: U of (33) represents the minimum possible

fractional (convertible to percent) amount by which the time-scale adjustment factors

SM for the five graphs must be assumed to depart from the ideal value unity (collec-

tively, in weighted RMS value of their individual deviations from unity) in order to

maximize the closeness of fit of all of the zero-crossings by a single mathematical

log-chirp formula. Thus, merely by proceeding through the formulas (21), (22), (31)

with definitions (16.5) and (27), and (33), the quantities E and U are calculated, which

are respectively, the best RMS phase-fit to zero-crossings, and the smallest

weighted-RMS readjustment of time-scales that is needed - best, and smallest, that

is, for the assumed value of K, which, however, may not itself be an optimum value!

Therefore, the entire process of calculating best-E and smallest-U values is to be

repeated for a selection of different assumed values of K, to find, by trial-and-error,

a best value for K, which would simultaneously minimize both E and U. Although

this procedure would be difficult for hand calculation, it runs easily on the program-

mable desk-top calculator, and quickly localizes the best range for K. As is sketched

in (34) in Appendix 1, the error-measures E and U are not actually minimized simul-

taneously for a single value of K; but their separate minima versus K define a very

narrow range for K, enabling a best, compromise value of K to be selected, which

carries considerable certainty, as will be further described in the ensuing discussion

of numerical results.

The process previously described, of calculating a least error E of phase-fit of

zero-crossings, and a least measure U of time-scale readjustments that are needed to

optimize the fit, versus values arbitrarily assumed for the parameter K, gives the

numerical results shown in Table 2 when that process is applied to the empirical

zero-crossing data, which is comprised of the entries appearing in the first two

columns (t versus N) of the acompanying computer printout sheets C1 to C5.

20



From Table 2, it is seen that the best value of K is bracketed tightly between the

values 1. 0721 and 1. 0738, which minimize U and E, respectively: this is the "range

of compromise" which was illustrated in a qualitative way in the sketch (34) in Appen-

dix 1. In this range of K, broadened to round the end values of K to the nearest

0. 0005 unit, the values of U that are encountered do not exceed 1. 82 percent, and thus

represent putative time-scale errors that are easily supportable in view of the time-

accuracy of the experimental apparatus - sufficiently easily justifiable, in fact, that

a strict minimization of the error-measure U loses importance compared to the mini-

mization of the phase-error measure E. On this basis, the value of K that minimizes

E (K = 1.0738) could be chosen to be the final value for K; but inspection of Table 2

shows that a small movement, to slightly smaller values of K, makes a worthwhile

reduction in the value of U, while only inappreciably increasing the value of E. Parti-

cularly, in going from K = 1. 0738 to 1.0735, U decreases by about 16% of itself, while

E increases in value by only 2.3 percent of itself. Although the further motion, of

lowering K to 1.0730, would decrease U by somewhat more than 20 percent further,

it would do so in a range of U where U is already small compared to possible experi-

mental time-scale errors; and such further motion would increase E by an additional

12 percent of its minimum value, marking an undesirable upward acceleration of the

value of E. Through these considerations, and to a precision of 0.0005 unit in K

(which represents a moderately good precision of 0.7 percent in the determination of

the quantity "K-I"), the analysis that has been traced suggests that the final value for

K be taken to be:

K = 1.0735 (dimensionless). (4)

For this best value of K, the formula (28) in Appendix 1 yields the following best value

for the remaining parameter, C, that is needed to completely specify the theoretical

logarithmic down-chirp formula, Equation (3):

C = 5.3036 (nanoseconds). (5)

The statistical analysis developed in Appendix 1 gives not only a best value for the

parameter C once K is chosen, but also gives best values for the factors by which the

21



TABLE 2

BEHAVIOR OF THE ERROR-MEASURES E AND U NEAR THEIR MINIMA,
VERSUS THE PARAMETER K

K E U

Assumed Value of Minimized RMS Value Minimized Required

the Log-Change Factor of Zero-Crossing (Weighted-RMS)

per Half-Cycle Phase-Discrepancies Time-Scale Readjustment

(ratio) (degrees) (percent)

1. 0700 28.79 2.05

1. 0705 25.49 1.62

1.0710 22.27 1.21

1.0715 19.19 0.85

1.0720 16.29 0.63

1.072135 ---------------- 15.56 ---------------------- 0.6184

1.0725 13.71 0.70

1.0730 11.64 1.01

1.0735 10.38 1.39

1. 073810 ---------------- 10. 1507 -------------------- 1.65

1.0740 10.24 1.82

1.0745 11.24 2.25

1.0750 13.11 2.70

1. 0755 15.55 3.15

1.0760 18.32 .3.60

1. 0765 21.29 4.05

1. 0770 24.37 4.50

1.0775 27.54 4.96

1.0780 30.76 5.41
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time-scales of all of the experimental waveform graphs should be assumed to be in

need of alteration to produce a best fit of the empirical zero-crossings by the theoret-

ical log-chirp formula. These and other numerical results of the analysis in Appendix

1, for the value (4) of K, are displayed on the accompanying computer printout sheet

C7, which is quite well self-explanatory. On sheet C7, just below the main table of

entries, there are listed the optimal time-shifts and the optimal time-scale readjust-

ment factors for each of the five experimentally obtained waveform graphs. None of

the five time-scale readjustment factors implies a time-scale correction larger than

2 percent; and the five time-scale factors have a weighted RMS value of only 1.4%

(Column U in Table 2). The five time-shifts that are listed on sheet C7 are figured as

being applied before the time-scale factors are applied to the waveform graphs, and

therefore do not correspond exactly to the quantities DM of the analysis in Appendix 1,

but instead to the quantities DM/SM there (see Equation (8) of Appendix 1, and its

text).

The second column, T, on sheet C7, lists the theoretical log-down-chirp zero-

crossings, computed from Equation (3) with the optimum K and C from (4) and (5).

The five main columns on sheet C7 then list the discrepancies in time between these

theoretical values and the (reduced - via Equation 8 of Appendix 1) empirically ob-

served zero-crossings. All of these discrepancies are less than 1 nanosecond, and

just over half of them (and practically all of the ones for early zero-crossings, N

< 16) are less, and in many instances, much less, than 0. 1 nanosecond. As listed on

sheet C7, these various time discrepancies, when converted to discrepancies of

oscillation phase at each measured zero crossing, have. an RMS value of only 10.4

degrees of phase - for 122 separate measurements made on the 48 zero-crossings of

interest. This result implies a rather impressive degree of agreement between the

observed zero-crossings and those of an ideal, mathematical, logarithmic-down-

chirp waveform, and justifies considerable confidence in the values derived above for
the waveform parameters K and C, stated in (4) and (5).

The very close agreement, that is found between the present measurements and

those which are in effect retrospectively made by the reanalysis of the earlier wave-

form photo RADC-OC-74-79, is noteworthy; this agreement is of considerable interest
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from the standpoint of reproducibility of chirp waveforms by physical structures,

because physically distinct pairs of the AEL APN-995B coplanar log-periodic antennas

were involved in the much earlier tests at RADC, than in the present tests at AEL:

One of the antennas that was used in the recent tests was manufactured at least 40

months later, and the other approximately 56 months later, than the two antennas that

had been tested at RADC. Table 3 makes a point-by-point comparison of the final

calculated results, on the one hand, for the reanalysis of the RADC-OC-74-79 wave-

form photo, and, on the other hand, for the statistical reconciliation of the five wave-

form graphs of interest from the recent AEL tests (these two sets of data are taken

from the computer printout sheets C6 and C7, respectively, which have been dis-

cussed previously).

Again, as in Table 1, the agreement of K-values is impressive. The final meas-

urement result, that the chirp's frequency region of primary interest spans about 43

half-cycles of oscillation, jibes excellently well with earlier expectations, and fits

quite satisfactorily into the range of capability of the inverse chirp generator under

construction, which is designed to be able to output as many as 47 half-cycles of

oscillation if desired.

Out of scientific curiosity, an initial effort has been made, outside the present

project, to try to understand the latest and best value for K in terms of some geomet-

rical ratio that is characteristic of the mechanical structure of the APN-995B anten-

nas. This separate effort has so far turned up the following interesting and simple

comparison: Whereas the down-chirp waveform's period has now been empirically

observed to grow by the factor 1. 0735 per half-cycle, hence (1.0735)2 or 1. 1524 per

full cycle, examination of the mechanical design specifications for the Type APN-

995B antenna reveals that the ratios of the specified spacings between the successive

arms of the antenna average 1. 155 (with a maximum individual deviation of about

1 percent of this figure) for the 25 different antenna arms that mount along each half

of the central boom. The present note does not go further into these matters, or

their theoretical discussion.

In synthesizing an up-chirp waveform that is to be a time-reversed replica of the

observed logarithmic down-chirp waveform, it seems most practical to have the
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TABLE 3

COMPARISON OF DOWN-CHIRP-WAVEFORM PARAMETERS FROM THE
RECENT AEL TESTS, AND FOR THE MUCH EARLIER RADC TESTS,

ON THE IMPULSE RESPONSE OF PAIRED APN-995B ANTENNAS

Final Value from Least-Square Adjustment,

for Best Fit of Empirical Data by an
Ideal Logarithmic-Down-Chirp Waveform

Reanalysis of Earlier Analysis of Recent
Quantity of Importance Symbol Units RADC Tests AEL Tests

(see Sheet C6) (see Sheet C7)

Period Growth-Factor

per Half-Cycle K (ratio) 1.0744 1.0735

Time Scale Factor (see
Equation (1) of
Appendix 1) C nSec 5.3635 5.3036

Parameters for Half-
Cycles Versus Time A half-cycles 13.936 14. 100
(see Equations(2) to
(4) of Appendix 1) B half-cycles 23. 406 23. 523

RMS Value of Dis- E degrees 20.14 10.38
crepancies in Oscillation (at peaks of (at zero-
Phase at Fitted Points one polarity) crossings)

Number of Fitted Points --- 22. 48.

Number of Individual
Time-Measurements --- --- 22. 122.

Computed L,cation N2 half-cycles 45.394 46. 251
of 50 MHz" T 2  nSec 139. 356 140.995

Computed Location N 1  half-cycles 2.967 3.325
of "1.05 GHz"

5T1  nSec 6.636 6.714

Computed Width of
Pulse Region (N2 -N 1 ) half-cycles 42.427* 42.926
of(T2-T) nSec 132.720* 134. 281

*Previously analyzed as 44 half-cycles (essentially), and 139 nSec, respectively,

in Technical Appendix A of AEL Proposal 18538-4373.
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synthesized pulse start and end at zero-crossings of the down-chirp waveform, even

if the range of instantaneous frequencies that is thus covered goes slightly beyond the

specified limits of 50 and 1050 MHz. Accordingly, with reference to the ideal pulse

boundaries specified by the half-cycle locations N2 and N1 listed in the last column of

Table 3, a practical up-chirp waveform should start at the forty-seventh zero-crossing

of the down-chirp waveform and, counting backwards, end at the third zero-crossing -

of the down-chirp waveform, and should, thus, comprise a total of 45 zero-.rossings

(numbered conveniently from N = 0 to N = 44), with 44 intervening time-intervals.

The range of instantaneous frequencies that this will cover (see the frequency formula

that appears near the bottom of printout sheet C7, which is obtained by inverting

formula (12) of Appendix 1) is, from about 47 to 1074 MHz, which encompasses the

desired range of 50 to 1050 MHz. Accordingly, an ordinal number N has been as-

signed to zero-crossings of the desired up-chirp waveform by subtracting the ordinal

number of the down-chirp's corresponding zero-crossing from the integer 47; this

relationship is printed, for convenient reference, as the leading entry on the accom-

panying computer printout sheet C8 which summarizes the timing goals to be used for

synthesis of the up-chirp pulse.

With the "(47-N)" reversal of ordinal numbering of zero-crossings, in going from

the down-chirp to the up-chirp waveform, it would at first seem logical that the time

coordinate of the up-chirp should be measured backwards from "148. 685" nSec, the

time of the down-chirp's forty-seventh zero-crossing (from the T-column of printout

sheet C7). Howe- er, the considerations that follow indicate that it will instead be

more meaningful and convenient to figure time for tLe up-chirp backwards from the

forty-sixth zero-crossing of the down-chirp, at "138. 505" nSec, thus giving the se-

cond formula that is printed at the top of printout sheet C8. First of all, the forty-

sixth zero-crossing of the down-chirp (hence, the N = 1 zero-crossing of the up-chirp)

corresponds to an instantaneous frequency of 50.9 MHz, and can, therefore, be la-

beled the "start" of the up-chirp without appreciably infringing upon the specified

frequency range. Second, there is the consideration that the N = 1 zero-crossing of

the synthesized up-chirp waveform will always be more cleanly defined in time than

will the N = 0 zero-"crossing" of the up-chirp; for, at N = 0, where the synthesized

26
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waveform will actually first depart from zero voltage, it will do so with a horizontal

"toe", and not actually cross zero, whereas the N = 1 zero-crossing will consist of

a clear reversal of polarity, cutting definitively through zero voltage. In other words,

from a practical waveform standpoint, N = 1 will actually be the first clearly defined

zero-crossing of the up-chirp waveform, and will thus constitute a more precise datum

from which to measure time intervals associated with the up-chirp pulse. From this

standpoint, the N = 0 location on the up-chirp pulse serves merely as a dummy zero-

"crossing" which conveniently gets the up-chirp moving, and away from zero volts,

so that the subsequent polarity reversals, which comprise the up-chirp' s true zero-

crossings of interest, can begin; the up-chirp's initial region, between N = 0 and N =

1, brackets instantaneous frequencies from 47.4 to 50.9 MHz whose accurate inclusion

is not essential, and constitutes a single "dummy" half-cycle whose presence guaran-

tees a more precise definition of the remainder of the up-chirp of interest, extending

fromN= 1 to N =44.

With the adoption of the "(47-N)" reversal of ordinal numbering, and of the

"(138.505-T)" reversal of the time-coordinate measured in nanoseconds, both the

ordinal numbering and the times of occurrence of the zero-crossings of the up-chirp

waveform become well defined in terms of the corresponding entities of the down-chirp

waveform, which are listed on printout sheet C7. The resulting complete plan of the

time-reversing up-chirp pulse is tabulated for convenient reference in the main body

of the accompanying computer printout sheet C8 (this tabulation is divided horizontally

into blocks of 8 lines or 4 lines, which correspond to the main power divider/combiner

units encountered by the output ends of the "500"-series of connecting cables in the

pulse-synthesizing circuitry). Printout sheet C8 also displays formulas which are

useful for interconverting any two of the three following quantities belonging to the

planned up-chirp waveform: Elapsed time, T (measured from the N = 1 zero-crossing,

as previously explained); elapsed number of half-cycles of oscillation, N (not neces-

sarily an integer, in this context); and the instantaneous frequency, f. The derivation

of the detailed plan for the up-chirp pulse, summarized on printout sheet C8, com-

pletes an important necessary step, and a logical phase, of thc present program.
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PART II

EXPERIMENTAL RESULTS OF RADIATION FIELD
COMPRESSION BY THE CONJUGATE

DESPERSIVE IMPULSE RESPONSE OF TWO

AEL APN-955B COPLANAR
LOG-PERIODIC ANTENNAS

29/30

~I



<-J ->4

1'r I.

LO ~ 7

ch rc Z ~ '5~ 4- -V ____

C4L 0 W i:L-

x >31



+T- I-,- T-J
_5 > T

I . I -4+__t +--- ;:I q , - 1--

< D << cc

V) >- U

Z _j -J CL cQ + +
CLa- CNC-4 LU .... .

N ir N
i CL

cr cc cc
0 LU z 0

u CL UJ x

T

.... ......... ....

-- 47

777

77

=mb,

-7-T

dc= -

-T-

I I I I -
...........

f-
It- L

, 

Li 

i 

I

T-
tT-,

-t +-T-

L: i- I'-tit

_LL L !T

4- :1 LL+
+ t

32



-*_ _ _ __ _ - - -- A-

LU

2-

0 0I _j 0

Z Z

>- IL o _ 7
oWZOj; - _--j -

_ 10s
LoN

L)_ __ __ __ __ __ __ -

______o_

__ _ _ _ _ _ _ __ __ __ _ 
__ _ _ __ _ _

Go 0< Z 33



2ii

.. .. . . -' _ J l

-- F- -

LLI
to . . . . . . - - ;

.. 1 . . . .. . . ",. . .. .. . . .

. .T4 : >. .._ _ - -.

- --• - - - -. . . ... . . . . . . . . . . . ,. .

r-. .. .. . .. . ..... ... ..... ., .. . ..

... . ..:.. . . : : . .* .. - -. - -- ,, +

--- -- -.. - --. . ...+ . . .....

.. .... . . . . ..

.~.. .... .... .... . ..... .. T ."q

. . ... . . .. . . . ... . .

o - i - i l -i i Nii 1 i 2 2 i ; i i i i 7

. . . . . . . . ...... -- |... . .... ..... TT.... .... .. . . . .... .. ....
I ..- ........................ .... .. .. . ...+j + ......... ... .... . . ,. ... ...-.. ...... ..1
4 . j. .................. ........................... +.....- ... ...

I- - . . . . ., o

FOR "os.0

-------..-.................. ............... . .. .

- -...-- .-t.... ..--I - ....... .... . --- 4... - - -

34-

. .. . ...... .......... ++".......-. fl ... ii........-" ,ilpI
. .

.... ' .. "'. ... .... +



II

JI

DATA ON THE CONJUGATE LOGARITHMIC UP-CHIRP

GENERATOR CONSTRUCTED AND TESTED

17 JANUARY 1979
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DELAY CABLE DATA
MEASURED VERSUS CALCULATED

Measured Calculated Time Difference Group Time
Cable Zero Crossing Zero Crossing Longer Shorter Difference

Number (ns) (ns) (ns) ([As) (ns)

500 10.15 10.180 0.03
501 9.3 9.483 0.183
502 8.6 8.834 0.234
503 8.5 8.229 0.271
504 8.1 7.666 9.434
505 7.6 7.140 0.46
506 6.3 6.652 0.352
507 6.8 6.196 0.604 0.97 Longer

Total Time 65.35 64.38 1.769 0.799

508 5.015 5.773 0.758
509 5.75 5.377 0.373
510 4.75 5.008 0.258
511 4.75 4.666 0.084
512 4.55 4.347 0.203
513 3.95 4.048 0.098
514 3.95 3.772 0.178
515 3.5 3.513 ___ 0.013

Total Time 36.215 36.504 0.838 1. 127 0. 289 Shorter

516 2.75 3.273 0.532
517 3.25 3.049 0.201
518 2.35 2.840 0.49

519 3.00 2.645 0.355
520 2.70 2.465 0.235
521 2.00 2.296 0.296
522 2.50 2.138 0.362
523 2.25 1.992 0.258

Total Time 20.8 20.698 1.411 1.318 0.093 Longer

524 1.76 1.856 0.096
525 1.8 1.728
526 1.50 1.611 0.111
527 1.60 1.500 0.100
528 1.30 1.397 0. 097
529 1.50 1.302 0.198
530 . 92 1.212 0. 292
531 1. 10 1. 130 0.030

Total Time 11.48 11.736 0.370 0.626 0.256 Shorter

37

mum



DELAY CABLE DATA
MEASURED VERSUS CALCULATED

(Continued)

Measured Calculated Time Difference Group Time
Zero Crossing Zero Crossing Longer Shorter DifferenceNumber (ns) (ns) (ns) (ns) (ns)

532 0.98 1.052 0.072
533 0.98 0.980 0.00 0.00
534 0.80 0.913 0.113
535 0.90 0.851 0.049

Total Time 3.66 3.796 0.049 0. 185 0. 136 Shorter

536 0.78 0.792 0.012
537 0.78 0.738 0.042
538 0.78 0.687 0.093
539 0.84 0.641 0.199

Total Time 3.18 2.858 0.334 0.012 0.322 Longer

540 0.50 0.596 0.096
541 0.64 0.556 0.084
542 0.61 0.518 0.092

Total Time 1.75 1.67 0.176 0.096 0.08 Longer

Remaining Cables, unable to measure.

CALCULATED TOTALS MEASURED TOTALS

64.38 ns 65.35 ns

36.504 ns 36.215 ns

20.698 ns 20.8 ns

11. 736 ns 11.48 ns

3.796 ns 3.66 ns

2.858 ns 3.18 ns

1.67 ns 1.75 ns

141.642 ns 142.435 ns

TOTAL MEASURED VALUES ARE 0.793 ns LONGER THAN CALCULATED VALUES.
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PRELIMINARY TESTING OF WAVEFORM GENERATOR,

EXCLUDING CABLES #532 TO #542.

2 OCTOBER 1978
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FINALIZED DATA ON RECONSTRUCTED PULSE TO INCLUDE:

1. WAVEFORM GENERATOR OUTPUT AS SEEN AT THE
ANTENNA.

2. RECEIVED PULSE CHARACTERISTICS WITH EX-
PANDED VIEW.

3. TEST INVOLVING A STUB MONOPOLE THAT SHOWS RE-
FLECTIONS UNDER TWO DIFFERENT CONDITIONS.

11 APRIL 1979
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CONCLUSIONS

1. The processing gain of approximately 20 dB, as compared to CW signal, was

obtained.

2. The processing gain does not deteriorate appreciably when antennas are mis-

aligned.

3. The concept of utilizing two log-periodic antennas as matched filters appears to

be valid.

4. The generator, as constructed, is extremely difficult to assemble and "tune" to

produce the specified waveform. A different technique, perhaps using SAW

devices trimmed by programmed machinery, can be adopted.

61/62

L -~I J



in

APPENDIX 1

THEORY OF THE RECONCILIATION OF

SEVERAL SLIGHTLY DIFFERING
EMPIRICAL GRAPHS OF A

SINGLE, UNDERLYING LOGARITHMIC
DOWNCHIRP WAVEFORM

1-1/1-2



APPENDIX 1

THEORY OF THE RECONCILIATION OF SEVERAL SLIGHTLY
DIFFERING EMPIRICAL GRAPHS OF A SINGLE,

UNDERLYING LOGARITHMIC DOWNCHIRP WAVEFORM

1. THEORETICAL FORMULAE

For a suitable choice of the time-origin, the time T, at which any specified num-

ber N of HALF-cycles (not necessarily an integer) will have occurred, is ideally ex-

pressible by means of the formula:

N
T=C , (1)

where C and K are suitable positive constants. This formula, if solved for N, has

the form:

N = A InT- B, (2)

where A and B are constants that are determinable from C and K via the formulas:

A =1 / InK, (3)

B = InC / inK, (4)

whose own inverses are:

K = exp(1/A), (5)

C = exp(B/A). (6)

2. EMPIRICAL STATEMENT OF THE TIMES OF ZERO-CROSSINGS

We suppose that measurement of the positions of zero-crossings of the chirp

waveform, on the various empirically obtained waveform graphs (chart-recorder

outputs of sampling-scope information), together with the stated time calibration of

each of the graphs, gives the following information:

tNM, the time of occurrence of the N- zero-crossing on the Mth

graph, measured arbitrarily from the left-hand margin of the graph,

ms known for each graph (for a different range of N- values on each

of the different graphs). (7)
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In all the present work, times are uniformly assumed to be expressed in nsec.

3. REDUCTION OF THE EMPIRICAL TIMES BY SCALE-CHANGE AND ORIGIN-
SHIFT

On the Mth graph, the "reduced time-coordinate," TNM, corresponding to the

"primary time-coordinate" tNM of the N- zero-crossing, is assumed to be obtainable

from tNM by the formula:

TNM StNM + DM, (8)

where SM is a (not yet specified) scale factor which putatively (if different from unity)
thcorrects the time calibration of the Mt - graph; and DM is similarly an unspecified

corrective shift of the time origin, performed on the MtL graph after the time-scale

correction SM is applied.

The reduced zero-crossing times TNM are assumed to be directly comparable

with times calculated from the theoretical formula (1) (whereas the primary times,

tNM of the zero-crossings are not so comparable). NOTE: It is assumed throughout

that a given N-value refers to the same zero-crossing of the underlying chirp wave-

form, regardless of which graph is being examined.

4. OFFSETS BETWEEN THE EMPIRICAL AND THE THEORETICAL ZERO-
CROSSING TIMES

If the waveform in question were mathematically a perfect logarithmic downchirp,

and were perfectly accurately portrayed by the various graphs, then one could expect

to find (see the form of Eq. 1):

NTNM = C K (theoretical formula), (9)

-- for suitable constants C and K that do not depend upon the graph M being

examined, (and for suitable origin-shifts DM (see Eq. 8) on the various graphs, and

for no scale corrections (i. e., all the SM - 1) on the various graphs).

However, in the absence of such ideal circumstances, Eq. (9) will in general not

hold exactly at any measured point. It becomes of interest, therefore, to calculate
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the amount by which Eq. (9) is not satisfied, at each measured point. This

discrepancy, or offset, will be:

(TNM - C K N ) units of time, (10)

that the N- zero-crossing, on the M h graph, where C and K are as yet unspecified

constants.

5. NORMALIZATION OF THE TIME-OFFSETS

A given amount of time-offset (10) will of course have widely different signifi-

cances, depending upon whether it refers to a zero-crossing located in a high-

frequency or a low-froquency region of the chirp. Therefore, to compensate for this,

and provide a measure for offset that will have a fixed significance at all locations in

the chirp, the time-offset (10) will be expressed dimensionlessly, as a fraction of the

chirp's instantaneous cycle-width, or, period, in the same locality.

By differentiating Eq. (1) to obtain dT/dN, the instantaneous rate of increase of

time per HALF-cycle of the chirp waveform, one finds:

dT/dN = C KN InK (in nsec/HALF-cycle). (11)

The instantaneous period of the chirp is therefore:

2C KN InK (in nsec/full cycle). (12)

By dividing each time-offset (10) by the corresponding instantaneous period (12),

one may therefore define the equivalent "offsets, in cycles of the chirp oscillation,"

"ENM" --- (TNM - C KN ) / (2C KN inK) cycles, (13)

thh
at the N- h zero-crossing, on the MtL graph.

The offsets or discrepancies ENM of (13) can be expressed more explicitly, in

terms of the primary measured time-coordinates tNM, by using Eq. (8) to eliminate

the TNM from (13); this gives the offset at the Nt h zero-crossing, on the Mth graph,

as:

ENM = (SM tNM + DM - C K / (2C KN inK), (14)

measured in cycles of oscillation.
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6. MINIMIZATION OF THE ZERO-CROSSING OFFSETS ON EACH GRAPH

A suitable measure of the over-all offset between the reduced empirical zero-

thcrossings and the theoretical zero-crossings, on the M- graph, is the sum of squares

of the offsets (14) for that graph, i. e. , the measure "PM" defined by:

PM (ENM = (2C InK) - 2 1 [(tNMK -N)SM + (K-N )DM - C] 2. (15)

By expanding the sum in (15), one obtains:

PM = (2C inK) - 2  2 2(tN2K-2N + 2S D 2 t K- 2 N

M (tNM) M MN NM

" (DM)2 K - 2N _ 2CS M 2 tNMK-N -2CDNM K- i  (16)

N N N

+ C 2 JM],

where:

("JM" denotes the number of confidently measurable zero-crossings

on the Mth graph.) (162)

Examination of (16) reveals that PM is simply a quadratic function of the unknown

scale factor SM and of the unknown time-origin-shift DM, for the Mt h graph. PM can

therefore readily be minimized with respect to the choices of SM and DM, by equating

to zero the partial derivatives 3 PM /sM and aPM/aDM; this yields (after canceling

common constant factors) the following two simultaneous linear equations for SM and

2 - 2 ND It 2 N Ct KNSM 2: (tg)K-2 + DM It tN K - 2  C N; tNMK -N  (17)

SMN (NM) MN NM N NM (7

and
-2N -2N -N

s It K +±D 2;K zC 2;K .(18)

MN NM M N N

The solution of the sililtaneous equations (17) and (18), for the optimum SM and

DM (that minimize PM of (15)), is:

DM =QM C, (19)

and

SM = M C, (20)
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II

where QM and RM stand for the following readily calculated, but complicated-

appearing quantities:

2 -2N -N -2N -N

QM--Z(M 2 2 N K -2N _ I 'K-2N)2  7 (21)

an MN N NM N M( 
1

and

Y (t_ _K - N) ,:K-2N _ -tY.__- 2N ,'K-N
tN NM N N NMK NK (22)

2 -2N -2N -2N 2
Y. K K ~(ZtMK )LN t ) N NtN

which refer to, and are obtained from, the M graph, as the suffixes imply.

When the optimum values (19) and (20) are substituted for DM and SM in Eq. (16),

and the resulting expression is simplified with the aid of Eq. 's (17) and (18), the

minimized value for PM is found to be:

J Q XK -R Zt -K-M M M g NMK
P M = M N, (23)(minimum) (2 MnK)

2

which does not depend upon the value assigned to C.

7. MINIMIZATION OF THE REQUIRED TIME-SCALE CORRECTIONS

The scale-change or scale-"correction" factors SM for the various graphs would

most ideally all be equal to unity. But Eq. (20) imposes a constraint which prevents

this from taking place, in general. It therefore becomes of interest to evaluate how

close to unity Eq. (20) permits the various SM to be chosen; and it is important, here,

to notice that the constant parameter "C" in (20) has not yet been assigned, and is

available for optimization.

The amount by which a given scale factor SM differs fromunity is, with use ofI

Eq. (20):

(S-M 1)= (RMC -1). (24)
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The sum of the squares of these differences may then be taken, over the various

graphs, with weights that are taken to be the numbers of confidently measured zero-

crossings on the respective graphs, JM (see (16-)). The weighted sum of interest is

thus:

11W11= 2JM (SM - 1)2 = M JM (RMC - 1) 2 "  (25)

The minimization of this weighted sum brings the scale factors SM as close to unity as

the internal consistency of the zero-crossing-time data permits, and thus minimizes

the severity of the assumptions that one needs to make concerning the inaccuracies of

the stated time calibrations, in order to have the data jibe with the assumption that the

separate graphs arise from a single logarithmic-downchirp waveform.

By expanding the last sum in Eq. (25), one finds:

W= 2 2: JM(RM)2 - 2C 2 JMR + J, (26)
M ( R

where

"JI -Z JM (27)
M

is the total number of confidently measured zero-crossings on all the graphs involved.

But W of Eq. (26) is simply a quadratic function of the unassigned parameter C, and

therefore is readily shown to be minimized by the following choice of C:

C = (Z JMRM)/ ( JM(RM) 2 , (28)
M M M M

whose numerical value Is easily found with the aid of Eq. (22). And, when the choice

(28) is made for C, the minimized value of the weighted sum W of (25) or (26) is found

to be:

w (Z JMRM)2  (Z J(R) 2 ) )]. (29)
(minimum) M M

8. DEFINITION OF RMS ERROR MEASURES

The sums of squares (of the number-of-cycle offsets between reduced empirical

zero-crossings and theoretical zero-crossings) PM' defined in (15) for any given

graph, and minimized In Eq. (23), can themselves be summed over all the various
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graphs, and the resulting over-all sum can be divided by the total number of measured

zero-crossings, J of Eq. (27), to obtain a mean-square number-of-cycles offset for

all the zero-crossings; this can then be square-rooted, to define an over-all RMS off-

set, E, in number of cycles, for all of the measured zero-crossings. Thus, we de-

fine the "RMS Offset," E, by:

E [(1/J) I (minimum PM from Eq. 23)] 1/2, (30)
M

measured in cycles of oscillation. By substituting from Eq. (23), this becomes:

E = (2 lnK) - I [I - J-1 X (QM 1 K -N + RM Et NMK-n 1/2 (31)
M N N

(expressed in cycles of oscillation), which is readily evaluated via (21) and (22).

In a similar way, an irreducible RMS amount, "UT", by which the time-

calibrations of the various graphs must be regarded as being uncertain and in need of

correction by scale-factors differing from unity as discussed in Section 7, can be de-

fined as the square-root of the weighted sum of squares W of (25), after W is mini-

mized and divided by J, the total number of measured zero-crossings. Thus, the

quantity U is defined by:

1/2
U [(l/J) (minimum W from Eq. 29)] , (32)

and represents the minimum weighted-RMS fractional adjustment that must be allowed,

for time-scale recalibrations that are needed to bring the different waveform graphs'

zero-crossing data into maximum accord with one another and with the conceptual

picture of a single underlying downchirp waveform. Explicit use of Eq. (29) reduces

Eq.. (32) to the form:

U = [I - (2 JMRM)2 (J 1 J (R) 2 )- 1 1/2, (33)

which can be numerically evaluated via (22). The units of U are "fractional adjustment

of time-scale."
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9. SUMMARY OF CALCULATION PATHWAYS

A. To obtain the best adjustment or "reduction" of the measured zero-crossing times

tNM, use the sequence of equations (21), (22), (28), (19), (20), (8), to find the

"empirical" times TNM.

B. To find the theoretical zero-crossings corresponding to these, use the sequence

of equations (22), (28), (9).

C. To find "U", the minimum weighted-RMS time-scale adjustment that is needed,

over the various graphs, use the sequence of equations (22), (33).

D. To find "E", the minimum RMS cycle-offset between the empirical and theore-

tical zero-crossings, for all the graphs, use the sequence of equations (21),

(22), (31).

10. OPTIMIZATION OF THE CONSTANT PARAMETER "K" (the "log-change" factor
per half-cycle)

By inspecting the calculation pathways just listed in Section 9, it becomes ap-

parent that K is the only parameter that has so far remained undetermined. It cannot

be obtained analytically, but instead must be found by numerical trial and error, as

follows:

Versus different assumed values of K, calculate the values of U and E given by

(33) and (31) (see Section 9, parts C. and D.); imagine the resulting U and E to be

plotted versus K as sketched below:

"-.."2.7% TIME-
RECALIBRATION"

"22 DEGREES U

OF PHASE" EU

"13 DEGREES 34)

OF PHASE"
"1.2% TIME- A G O

RECALIBRATION" COMPROMISE

K

"1.0710 .11.0750"
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The range of K, between the (in general, distinct) values of K that minimize U or

E, will generally be small; and the U- and E-curves will generally be very flat in that

"range of compromise"; K can then be taken to be at a convenient point in that range;

after which, the optimized values of all the other parameters are determinable via the

routes summarized in Section 9. The numbers used in the above sketch, while only

illustrative, have been chosen to approximate actual results discussed in the main text.
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APPENDIX 2

WAVEFORM GRAPHS RECENTLY OBTAINED, SHOWING PORTIONS
OF THE COMBINED IMPULSE RESPONSE OF TWO AEL COPLANAR

LOG-PERIODIC ANTENNAS, TYPE APN-995B

Sweep Rate Involved Zero-Crossings of Interest
Graph No. (nsec/inch) for Data Reduction

2 20 #8 to #47

4 2 #1 to #16

5 10 #0 to #37

6 10 #28 to #46

7 10 #39 to #47

2
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APPENDIX 3

RELEVANT COMPUTER
PRINTOUT SHEETS

This section intentionally omitted. May be obtained by contacting
Project Engineer (see DD 1473).
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COMPUTER MODELING OF A

LOG-PERIODIC ANTENNA

ABSTRACT

A computer model of a six-element log-periodic antenna is described and operated in
both the time and frequency domains to calculate antenna input impedance, forward and
back%%ard incident-field transfer functions, and transient response characteristics. Com-
puted results are compared with experimental test data to demonstrate the model's
reliability. Additionally, the model is used to assess the antenna's coupling to an incident
EMP wave to provide a practical illustration of the model'sutility and to indicate its poten-
tial for further development.

INTRODUCTION

Until recent years, the state-of-the-art of corn- ingly. I have applied a number of well-known
puter simulation of electromagnetics systems was numerical procedures to model a multi-element log-
too primitive to permit the investigation of equip- periodic antenna array in the presence of a finitely
ment behavior under a suitably broad range of con- conducting ground and have compared computed
ditions. Testing and optimizing an antenna, for ex- behavior with experimental test results. In this
ample, required lengthy field testing and analysis of report, I describe the theoretical foundation of the
instrument data. No%, however. modeling tech- model, present results of measured vs theoretical
niques have advanced to the point where accurate data comparisons, and illustrate with an example
models of complex structures are feasible. Accord- how the model can be put to practical use.

MODEL THEORY

The antenna I selected is the U. S. Army model Modeling Antenna Structure
AS-2169!G, a six-element horizontal log-periodic
dipole arra) (see Fig. 1). It is a typical broad-band
comm'unications antenna designed to operate in the Modeling the structure of the log-periodic an-

30- to 76-MHz range, Additionall. there is sub- tenna calls for treating the antenna as an array of

stantial experimental test data available for the thin wires (i.e.. where the maximum transverse

antenna I dimension is small compared with the wire length
Modeling the behavior of a log-periodic antenna and wavelength) and using a frequency-domain for-

involves solving three sets of related problems: mulation of the thin-wire electric field integral
developing an adequate representation of the struc- equation. 2-3 The numerical procedure involves

ture of the antenna. computing antenna response representing a given wire contour with a series of

across the spectrum of its acti'e bandwidth, and. piecew ise linear segments. The unknown current on

finally. determining the antenna's transient each segment used to model the structure is first ex-

response to an arbitrar% %%aeform. pressed b) a three-term-basis function (constant,

4-
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Fig. I. Comfigurado mad dimeshes.
Model AS-2169/G Io-eriodic mieema.

sine, and cosine), which is then simplified by an ex-
trapolation procedure to reduce the number of un-
knowns to one per segment. Subsequently. delta-
function weights are used to point-match the thin-
wire integral equation at the segment centers. The
result is a linear system whose order equals the
number of segments in the model.

For the AS-2169/G antenna, the approximation
procedure led to a model consisting of a series of 72
interconnected straight-wire segments or vectors Rg. 2. Cinmfpo graphic model of amsm hgmneut.
(see Fig. 2). Each segment represents an unknown
sample point in the moment-method solution of the impedance is found by applying a I-V source signal
electric field integral equation. (The arrowheads in- to the antenna input terminals and then computing
dicate the reference direction for positive current the impedance from the resulting current into the
flow.) antenna. Similarly, the transfer function is found by

In addition to the log-periodic element modeling, applying an incident electric field of I V/m and then
simulating the antenna structure also calls for solving for the signal at the input terminals.
representing the feedline connecting the six dipoles.
This problem is solved by using a nonradiating
transmission line equation with an impedance of Modeling Transient Response
130 l?, which closely approximates the boom ima-pedance of thcosey approxiBte the dipom le_ Once the voltage transfer function is known, thepedance of the A S-2169/G . Betw een the dipole ele- r s o s f t e a t n a t n a b t a y w v f r
ments the phase is switched an additional 1800 to response of the antenna to an arbitrary waveform
model the construction of log-periodic antennas in may be found for both the frequency and time
general. The signal output calculated at the end of domains. The time-domain transient response is
the transmission line equation then serves as the found by convolution of he antenna impulse
output used in computing the antenna response, the response with the temporal field expression,
second of the three modeling problems. t

Modeling Antenna Response e 0(t) h(t - r) ein c (r) d7 (1)

Modeling the performance of the antenna across
its bandwidth is a fairly straightforward procedure.
For'the computation. I employed the NEC com- where eo(t) = antenna output voltage, einc(t) - inci-
puter code 3 to calculate the input impedance anc, dent electric field, and h(t) = antenna impulse
transfer function of the antenna due to an incident response in the time domain.
plane wave at 2-MHz intervals from 2 to 98 MHz (a An alternate method of determining the transient
total of 49 calculations in each instance). The input response is to perform the convolution first in the

2
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frequency domain-by multiplying the antenna and
transfer function by the 2- to 98-MHz spectrum of
the incident field-and then to perform a Fourier F-

transform to convert the fregue-ry n main to the e(t = F Eo(f)]
time€ domain:

where F is the inverse Fourier operator (Filon's

Eo(f) = E1nc(f) c.H(f) (2) method 4 is used for the inverse Fourier transform).

RESULTS

In general. the model appears to provide a fairly 250
accurate simulation of the behavior of the log- I I II II
periodic antenna. 225 (a) -

Input Impedance C: 200

The input impedance calculated from the model I 175

is showkn in Figs. 3a and 3b. The real part of the in- 150 -
put impedance shown in Fig. 3a varies in the region
of 50 R? over the 30- to 76-MHz frequency design 125 -

range of the antenna. Similarly, the reactive compo- .E 100
nent of the input impedance is centered on 0 S1 for
the same frequency range. The maximum standing- C 75-

wave ratio for the antenna would be approximately -- __
2.6. 50 - --

Transfer Functions 25 -
0

Transfer functions for incident plane waves from

both the forward and backward directions were 500 I I I I I I I

computed for the AS-2169/G. Figure 4 shows the 400 -(b)
calculated gain of the log-periodic array for the
forward (boresight) direction falling closely within 300 -
the antenna's 30- to 76-MHz frequency range. The C:
calculated response appears to agree very well with 200
the experimental continuous-wave test results, 1 100-
another indication of the reliability of the model. .

Figure 5 shows the transfer function for an inci- 0

dent wave striking the antenna from the backward
direction. Again, the match with experimental data .

appears close. C -200 -

Transient Response -300

To demonstrate the utility of the model in -400-

yielding reliable transient response values, I used -500 1

the experimental data from the measurement of the 0 10 20 30 40 50 60 70 80 90 100
incident field at the location of the antenna (Fig. 6). Frequency - MHz
The incident field includes the reflected field from F 3 C i (a) and input reactam (bi of
the finite ground. (The antenna was removed when AS-2169/G omas.
the measurements were taken.)

3
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400 11-
(a) Measured (b) Measured

0

-400-

0.1 6

-800-

> =
001 -1200

> 10 20 01 20 If II1 i l l 1 I I 1 I I
Calculated Cluae

F -200 --

-400

0.1 -600 -

4800

0.1 10 20 30 40 50 60 70 80 90 100 100 10 20 30 40 50 60 70 80 90 100

Frequency - MHz

Fig. 4. Caidated mad nmanred vltate transfer fuaitiom iao a Wo-0 load snowiag nagltude (a) and phase (b) for forward direction of io-
ddew flow.

I used Eqs. (2) and (3) to transform the time the frequency response was transformed back to the
domain incident field of Fig. 6 to the frequency time dormain. The results are shown in Figs. 7 (for
domain for each of the 49 frequencies of the com-
puted transfer function. The frequency domain measured and computed boresight incidence) and 8

equivalent of the incident field was then multiplied (for measured and computed backside incidence).

by the antenna transfer function to obtain the an- In both instances, there is remarkably good agree-
tenna response in the frequency domain. Finally, ment between measurement and computation.

A PRACTICAL EXAMPLE: EMP TRANSIENT RESPONSE
A recurring concern for designers of wide-band physically simulating EM P conditions suggests the

antennas that are used under military field condi-
tions is the effect of nuclear electromagnetic pulse
(EMP) on communications. The impracticality of that follows illustrates this.

4
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' I w I ' I ' I ' 400 ' 1 I I ' I ' 1
1) (b)

0

0.1 ~Measured

E 1 -800101
10 I 200>J

(c) (d)]
0

--200

-400

0.1 -600

Calculated -800 Calculated

0.01 -1000 , I
0 20 40 60 80 100 0 20 40 60 80 100

Frequency - MHz

Fig. 5. Computed and measured voltage transfer functions into a 5 i load showing magnitude (a) ad phase (b) for backward direction of
incident field.

500

400

E
300

% 200 -

100 Fig . Experimentaili measured incident field at log-periodic
w anWenna.

0

-100- Measured

-200 1
0 5 10 15 20 25 30 35 40 45 50

Time - ns 5
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200- r -

200- (a)

0 0

-200 -0 -Maue
Measured

>

30(b) 300 (b)
300-

200--

1 00
00

00
P 0

C -100

< 20 -- 200 -Calculated

30 -Calculated -- 300

-40 -L- I .
I40 80 120 160 200 0 40 80 120 160 200

Tim~e - ns Time - ns
Fig. 7. Calculated and measured transient response of the am- Fig. S. Calculated sod measured transient response of the an-
tenna connected to a 50-9? load for the incident field of Fig. 6, leana conniected to a WU-1 load for the incident field of Fig. 6.
forward direction, backward direction.

We begin with a two-term expression that is fre- EE

Cemp(t) = E0(e-*' - Cot)() whr
whe re s =jW. (5)

=4.0 X 106 sec- When the antenna is located over a ground plane,
we must include both the incident wave and a

0=4.76 X 108 secC1  specular reflected wave from the ground. For a per-
fect ground, the total field for an EMP wave upon

and the antenna is

1 05 Vimn EFOTAL =EINC + EREFL (6)

*-e.juen,; dorvain the EIP waveform may E
= EMP I I - u(t - AT](7)

6
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I

where u(t - AT) = 0 for t < AT, and AT = time Figure 10 shows the results of a two-step

delay between the arrival of the incident wave and procedure: a convolution of the EMP wave with the
the reflected wave for an object a distance h above calculated antenna transfer function followed by a
the ground. The delay AT is found to be Fourier transform of the results to the time domain.

Comparison with the transient response determined
from the measured continuous-wave data shows the

h agreement between the two techniques to be quite
AT (I - cos20) (8) good.

where h = height of the antenna above ground, C =
velocity of light, and 0, = angle of incidence with
respect to the ground.

In the frequency domain, the incident EMP wave 1.0
for the log-periodic antenna over a ground is thus 0.75 (a)
expressed as

0.50 -

E(f) = EEMP(f) (1 - e- j 2 trATf) . (9) 0.25 -

0

If a perfectly conducting ground is assumed, the
incident horizontally-polarized electric field un- -0.25 -
dergoes a 180 ° phase reversal when it reflects from > F

the ground. This reflected field turns off the incident I measurements
pulse as shown in Fig. 9. 1

c 0.75
0 0.4

0.3 (b)

0.2

1.0 0.1

0.8 0

0.6 -0.1
I 0.4

0o.2 -0.2

0 -0 -0.3
E
< -0.2 Measured -- 0.4 Calculated

-0.4 -A I I t I ,I
0 60 120 180 240 300 -0.5 4 8 1 1 240 80 120 160 20

Time - ns Time - ns

Fig. 10. Calculated EMP response for anntra Ista above
ground plane, compared with response derled from ew measure-

Fig. 9. Total electromagnetic pulse after ground interaction. meats.

7

4-13



CONCLUSIONS

In general. the model of the log-periodic antenna convenientl. made in such areas as angle of incident
pro.ides good agreement %% th experimental field, height abo'e ground. etc.. to further evaluate
measurements for those aspects of antenna behaio or
that %ere examined for this report Once credibihit the performance of the antenna at very Io ad-
in the model is established, trade-off studies can be ditional cost
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